Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Fish Shellfish Immunol ; 142: 109157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832750

RESUMO

There is a long-standing debate on the attributes of temperature for fish health. We recently showed that thermoregulatory programs exerted through natural behavioural fever drive molecular and cellular responses that contribute to pathogen clearance, inflammation control, and tissue repair. These offered a mechanistic basis for the survival advantage conferred through fever. Herein, we show the attributes of mechanical replication of this fever response. Central to our approach was consideration of both, the maximal temperatures naturally selected by fish after infection, as well as the dynamics of thermal changes induced through this response. Coarse replication of the febrile thermal program as well as shorter truncated thermal schedules offered immune-regulatory capacity. Most notably, these promoted induction of acute inflammation and significant enhancements to pathogen clearance. However, the coarse protocols tested only partially recapitulated enhancements to induction and control of tissue repair. Our findings highlight a promising new alternative to combat infections in fish using a natural, drug-free, sustainable approach.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/fisiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Peixes , Inflamação , Doenças dos Peixes/prevenção & controle , Aeromonas/fisiologia
2.
Fish Shellfish Immunol ; 112: 56-63, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33640538

RESUMO

The effects of dietary ß-glucan on innate immune responses have been shown in a number of different vertebrate species. However, there is conflicting information about the period of administration (shorter vs. longer), and it is also unclear to what extent ß-glucan's effects can be observed post-treatment in fish. Thus, we fed Nile tilapia for 0 (control group; 45 days of control diet), 15 (30 days of control followed by 15 days of ß-glucan), 30 (15 days of control followed by 30 days of ß-glucan) or 45 days with a diet containing 0.1% of ß-glucan (MacroGard®). We evaluated the growth performance at the end of the ß-glucan feeding trial and the innate immune function immediately after the feeding trial and 7 and 14 days post-feeding trial. In addition, at day 10 post-feeding trial, we assessed the tilapia's resistance against a bacterial infection. No significant differences were observed in growth performance between the groups; however, fish fed with ß-glucan for 30 and 45 days had higher (approx. 8%) relative weight gain compared to the control. Regardless of the administration period, fish fed with ß-glucan had higher innate immune responses immediately after the feeding trial such as lysozyme activity in plasma, liver and intestine and respiratory burst compared to the control, and in general these differences were gradually reduced over the withdrawal period (up to 14 days). No differences were observed in the plasma hemolytic activity of the complement or myeloperoxidase activity in plasma or intestine. Moreover, fish from the control group had early mortalities (2 vs. 4-5 days post-infection, respectively) and a lower survival rate (60 vs. 80%, respectively) compared to fish fed with ß-glucan for 15 or 30 days, and, interestingly, fish fed for 45 days with ß-glucan had no mortality. This study indicates that regardless of the administration period (i.e., 15 up to 45 days), the ß-glucan improved the innate immune responses and the tilapia's resistance to disease, and this protection could be observed up to 10 days post-feeding trial, adding in vivo evidence that ß-glucan may contribute to a trained innate immunity. Additionally, we showed that a longer period of administration did not cause immunosuppression as previously hypothesized but promoted further growth and immune performance. These findings are relevant to the aquaculture industry and demonstrate that a longer ß-glucan feeding protocol may be considered to achieve better results.


Assuntos
Ciclídeos/imunologia , Resistência à Doença/efeitos dos fármacos , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , beta-Glucanas/metabolismo , Aeromonas/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Distribuição Aleatória , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , beta-Glucanas/administração & dosagem
3.
Lett Appl Microbiol ; 72(1): 2-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32805752

RESUMO

Aeromonas spp. are ubiquitous bacteria that cause diseases in fish and other aquatic animals. They are the natural inhabitants of different aquatic environments, such as freshwater, brackishwater and marinewater. Extrinsic stressors, such as crowding, unhygienic handling, poor water quality, polluted feeding and inadequate nutrition, can predispose fish to Aeromonas infection. In ornamental fish, motile Aeromonas spp. are known as aetiological agents of motile aeromonad infections, which cause significant mortality in fish and economic loss in the ornamental fish industry. The existence of different virulence factors leads to the virulence potential of motile Aeromonas spp. There are several antimicrobials used to treat bacterial infections in ornamental fish. However, the extensive use of antimicrobials in the ornamental fish industry causes multidrug resistance. This article reviewed a multitude of virulence factors that are related to the ornamental fish-borne Aeromonas pathogenicity and the antimicrobial resistance determinants related to the multidrug resistance phenotypes of motile Aeromonas spp. in ornamental fish.


Assuntos
Aeromonas/patogenicidade , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Fatores de Virulência/genética , Aeromonas/efeitos dos fármacos , Aeromonas/genética , Aeromonas/fisiologia , Animais , Peixes , Água Doce , Infecções por Bactérias Gram-Negativas/microbiologia , Virulência
4.
Fish Shellfish Immunol ; 106: 518-525, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810528

RESUMO

Gut microbiota plays a central part in the regulation of multiple host metabolic pathways, such as homeostasis, immunostasis, mucosa permeability, and even brain development. Though, slight known about the function of an individual gut bacterium in zebrafish. In this study, germ-free (GF) and conventionally reared (CV) zebrafish models utilized for studying the role of gut bacteria Vibrio sp. and Aeromonas sp. After the analysis of gut microbial profile in zebrafish male and female at three-month age, Proteobacteria and Fusobacteria dominated the main composition of zebrafish intestinal microflora. However, the relative richness of them was different base on gender variance. Aeromonas sp. and Vibrio sp. belonging to Proteobacteria phylum of bacteria were isolated from zebrafish gut, and their potential capacities to trigger innate immunity were investigated. In gut microbiota absence, the expression levels of the innate immunity genes in the GF group were not significantly changed compared to the CV group. After exposure to Aeromonas sp. and Vibrio sp., the expression levels of myd88, TLRs-, and inflammation-related genes were increased in both GF and CV groups, except tlr2 and NLRs-related genes. However, the expression level of NF-κB and JNK/AP-1 pathway genes were all decreased after exposure to Aeromonas sp. and Vibrio sp. in both GF and CV groups. Interestingly, inflammation-related genes (tnfa, tnfb, and il1ß) were activated in the CV group, and there were not significantly changed in the GF group, indicating that other bacteria were indispensable for Aeromonas sp. or Vibrio sp. to activate the inflammation response. Taken together, this is the first study of gut bacteria Vibrio sp. and Aeromonas sp. prompting the innate immune response using the GF and CV zebrafish model.


Assuntos
Aeromonas/fisiologia , Citocinas/genética , Doenças dos Peixes/imunologia , Microbioma Gastrointestinal , Expressão Gênica , Vibrio/fisiologia , Peixe-Zebra/imunologia , Animais , Feminino , Doenças dos Peixes/microbiologia , Vida Livre de Germes , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Masculino , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/veterinária
5.
Fish Shellfish Immunol ; 105: 310-318, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32702476

RESUMO

Oral vaccines are highly demanded by aquaculture sector that requires alternatives to injectable vaccines, involving fish handling, stress-related immunosuppression and mortalities. However, most previous attempts to obtain effective oral vaccines have failed due to a restricted tolerance mechanisms in intestine, whose mucosa is at the frontline of antigen encounter and has to balance the equilibrium between tolerance and immunity in a microbe-rich environment. Thus, the search for oral adjuvants that could augment immune responses triggered by antigens allowing them to circumvent intestinal tolerance is of great relevance. The present work focuses on the adjuvant potential of the Escherichia coli LT(R192G/L211A) toxoid (dmLT). To undertake an initial screening of the potential that dmLT has as an oral adjuvant in rainbow trout (Oncorhynchus mykiss), we have analyzed its transcriptional effects alone or in combination with Aeromonas salmonicida subsp. salmonicida or viral hemorrhagic septicemia virus (VHSV) on rainbow trout intestinal epithelial cell line RTgutGC and gut explants. Our results show that although dmLT provoked no significant effects by itself, it increased the transcription of pro-inflammatory cytokines and antimicrobial genes induced by the bacteria. In contrast, when combined with VHSV, dmLT only increased the transcription of Mx and the intracellular adhesion molecule 1 (ICAM1). Therefore, the protocol designed is an effective method to initially evaluate the effects of potential oral adjuvants, and points to dmLT as an effective adjuvant for oral antibacterial vaccines.


Assuntos
Adjuvantes Imunológicos/metabolismo , Escherichia coli/imunologia , Oncorhynchus mykiss/imunologia , Toxoides/imunologia , Aeromonas/fisiologia , Animais , Linhagem Celular , Mucosa Intestinal/imunologia , Novirhabdovirus/fisiologia , Oncorhynchus mykiss/genética , Transcrição Gênica/imunologia
6.
J Fish Dis ; 43(8): 839-851, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32618015

RESUMO

Burbot (Lota lota maculosa) are a potential new species for commercial aquaculture. As burbot culture expands, there is a need to further define pathogen susceptibility and characterize aspects of the burbot immune response in an effort to assess fish health. A recent clinical diagnostic case from juvenile burbot reared at a commercial production facility resulted in the isolation and identification of Flavobacterium columnare along with several Aeromonas spp. The F. columnare isolate was assigned to genetic group 1 via multiplex PCR, a genetic group commonly associated with columnaris disease cases in rainbow trout (Oncorhynchus mykiss). Virulence of the F. columnare isolate was assessed in vivo in both juvenile burbot and rainbow trout. Additionally, several of the Aeromonas sp. case isolates were identified via sequencing (16S rRNA, gyrB and rpoD) and a putative A. sobria isolate (BI-3) was used to challenge burbot, along with a known virulent Aeromonas sp. (A141), but BI-3 was not found to be virulent. Burbot were refractory to F. columnare when challenged by immersion, and it is likely that this is a secondary pathogen for burbot. Although refractory in burbot, the identified F. columnare isolate (BI-1) was found to be virulent in rainbow trout.


Assuntos
Aeromonas/fisiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Gadiformes , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Infecções por Flavobacteriaceae/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Análise de Sequência de RNA/veterinária
7.
Lett Appl Microbiol ; 71(4): 337-344, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32542738

RESUMO

Aeromonas and Pseudomonas are important bacterial species involved in spoilage of refrigerated freshwater fish. In this study, 10 Aeromonas and seven Pseudomonas bacterial strains were isolated from spoiled grass carp and identified. Twelve of seventeen bacterial strains showed high potential of biofilm formation and 14 of 17 can produce extracellular protease. In order to explore the spoilage capacity of dual-species, the sterile grass carp fillets were inoculated with mono- and dual-species of Aeromonas salmonicida and Pseudomonas azotoformans strains. The results revealed significantly higher levels of the total viable count and total volatile basic nitrogen in dual-species as compared to mono-species from day 6. The higher contents of histamine, cadaverine and serious degradation in muscles tissue were also observed in dual-species after 10 days of storage. Results of in vitro experiments showed that the co-culture of A. salmonicida and P. azotoformans significantly increased the bacterial maximum growth rate, promoted the biofilm formation and improved the spoilage capacity of bacterial strains. This study has revealed that the co-culture of Aeromonas and Pseudomonas bacterial strains accelerated spoilage process of grass carp and increased biofilm formation. It indicates that the mixed-cultures of spoilage micro-organisms pose a huge threat to food industry.


Assuntos
Aeromonas/fisiologia , Carpas/microbiologia , Pseudomonas/fisiologia , Aeromonas/crescimento & desenvolvimento , Animais , Biofilmes , Técnicas de Cocultura , Contaminação de Alimentos/análise , Pseudomonas/crescimento & desenvolvimento
8.
Fish Shellfish Immunol ; 104: 470-477, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585357

RESUMO

Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Imunidade Inata/genética , Receptores do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Aeromonas/fisiologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Rim Cefálico/imunologia , Leucócitos/imunologia , Lipopolissacarídeos/farmacologia , Nocardia/fisiologia , Nocardiose/imunologia , Nocardiose/veterinária , Poli I-C/farmacologia , Receptores do Fator de Necrose Tumoral/imunologia , Baço/imunologia , Ácidos Teicoicos/farmacologia , Fator de Necrose Tumoral alfa/imunologia
9.
J Fish Dis ; 43(5): 609-620, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196710

RESUMO

Previously, Aeromonas sobria and A. salmonicida were identified to be the most prevalent species in salmonid farms in Korea. In this study, we evaluated the biochemical characteristics, antibiotic susceptibility and pathogenicity of A. salmonicida (3 isolates) and A. sobria (8 isolates) isolated from salmonids, and further investigated efficacy of A. salmonicida vaccine. In antibiotic susceptibility test, all of A. sobria isolates were resistant to amoxicillin and ampicillin. Six A. sobria and two A. salmonicida isolates were resistant to oxytetracycline. In challenge test, A. sobria isolates exhibited low pathogenicity in rainbow trout (Oncorhynchus mykiss) while one A. salmonicida isolate showed high pathogenicity with LD50 of 6.4 × 103  CFU/fish in rainbow trout and coho salmon (Oncorhynchus kisutch). Among virulence factors, secretion apparatus (ascV and ascC) and transcription regulatory protein (exsA) of type 3 secretion system and A-layer protein genes were differentially detected in DNA or cDNA of A. salmonicida isolates, indicating their contribution to the pathogenicity. A formalin-killed vaccine of highly pathogenic A. salmonicida isolate exhibited a protective effect with relative survival rate of 81.8% and 82.9% at 8 weeks and 16 weeks post-vaccination, respectively, in challenge test.


Assuntos
Aeromonas salmonicida , Aeromonas , Vacinas Bacterianas/administração & dosagem , Furunculose/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Oncorhynchus kisutch , Oncorhynchus mykiss , Aeromonas/efeitos dos fármacos , Aeromonas/imunologia , Aeromonas/patogenicidade , Aeromonas/fisiologia , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/imunologia , Aeromonas salmonicida/patogenicidade , Aeromonas salmonicida/fisiologia , Animais , Farmacorresistência Bacteriana , Formaldeído , Furunculose/imunologia , Furunculose/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , República da Coreia , Vacinação/veterinária , Vacinas de Produtos Inativados/administração & dosagem , Virulência
10.
Vet Res Commun ; 44(1): 9-18, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31965460

RESUMO

Abundance and antibiotic resistance of bacteria of the genus Aeromonas isolated from the water of three carp ponds were studied. The number of those bacteria differed between the studied ponds, sites and season. The results of the present study showed that planktonic Aeromonas inhabiting those ponds strongly differed in the resistance level to tested antibiotics. These microorganisms were the most resistant to amoxicillin, ampicillin, clindamycin and penicillin. However, all isolates Aeromonas were susceptible to gentamycin and streptomycin. Majority of bacterial strains were characterized by resistance to 4-6 of the 12 antibiotics tested. Bacterial resistance to antibiotics depended on their chemical structure. Aeromonas strains isolated from the studied ponds were the most resistant to ß-lactam and lincosamides antibiotics, while the most susceptible to aminoglycosides, chloramphenicols and fluoroquinolones.


Assuntos
Aeromonas/efeitos dos fármacos , Antibacterianos/química , Farmacorresistência Bacteriana , Lagoas/microbiologia , Aeromonas/fisiologia , Animais , Aquicultura , Carpas , Polônia , Densidade Demográfica
11.
Food Microbiol ; 86: 103356, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703863

RESUMO

Quorum sensing (QS), bacterial cell-to-cell communication, is a gene regulatory mechanism that regulates virulence potential and biofilm formation in many pathogens. Aeromonas sobria, a common aquaculture pathogen, was isolated and identified by our laboratory from the deteriorated turbot, and its potential for virulence factors and biofilm production was regulated by QS system. In view of the interference with QS system, this study was aimed to investigate the effect of methyl anthranilate at sub-Minimum Inhibitory Concentrations (sub-MICs) on QS-regulated phenotypes in A. sobria. The results suggested that 0.5 µL/mL of methyl anthranilate evidently reduced biofilm formation (51.44%), swinging motility (74.86%), swarming motility (71.63%), protease activity (43.08%), and acyl-homoserine lactone (AHL) production. Furthermore, the real-time quantitative PCR (RT-qPCR) and in silico analysis showed that methyl anthranilate might inhibit QS system in A. sobria by interfering with the biosynthesis of AHL, as well as competitively binding with receptor protein. Therefore, our data indicated the feasibility of methyl anthranilate as a promising QS inhibitor and anti-biofilm agent for improving food safety.


Assuntos
Aeromonas/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Aeromonas/genética , Aeromonas/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
J Water Health ; 17(3): 380-392, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31095514

RESUMO

The diversity and distribution of Aeromonas spp. associated with virulence profiles from the Rodrigo de Freitas Lagoon were investigated using phylogenetic analysis of gyrB/rpoB gene sequences for speciation. The concatenated gyrB/rpoB gene sequences clustered into five species: Aeromonas punctata/caviae (n = 37), A. hydrophila (n = 10), A. dhakensis (n = 16), A. jandaei (n = 1) and A. enteropelogenes/trota (n = 3). The virulence genes (atc/aerA/hlyA/asp/amp) resulted in 19 virulence profiles, distributed heterogeneously among the five Aeromonas species. Out of the 67 isolates, 16% presented five distinct profiles carrying four virulence genes and 7% showed all genes investigated. The hemolytic genes were detected as follows: act 54% (37/67), aerA 36% (24/67), hlyA 26% (18/67) and proteolytic genes such as asp 36% (24/57) and amp in 85% (57/67) were widely distributed in lagoon sampling stations. Meanwhile, 88% (59/67) and 92% (62/67) of the isolates showed hemolytic and proteolytic activity, respectively. Our results demonstrated that concatenated sequences of the gyrB and rpoB genes showed to be an adequate approach for the Aeromonas speciation and prevalence. The high heterogeneity of virulence genes among the species resulted in several virulence profiles, as well as high percentages of hemolytic and proteolytic activity, demonstrating the necessity of further epidemiological surveys of Aeromonas species pathogenicity in an aquatic recreational lagoon.


Assuntos
Aeromonas/fisiologia , Infecções por Bactérias Gram-Negativas , Fatores de Virulência , Microbiologia da Água , Humanos , Filogenia , Virulência
13.
PLoS One ; 14(3): e0213370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30861041

RESUMO

Algicidal bacteria have received broad acceptance as an ecofriendly tool for controlling harmful algal blooms. However, their practical application is still limited to the lab-scale tests due to the complex alga-bacterium interactions in different nutrient statuses. In this study, the Aeromonas sp. L23 that exhibit relatively wide-spectrum in algicidal activity was isolated from a eutrophic agricultural lake. The physiological response of cyanobacteria and green to the algicidal activity under varied nutritional status were studied in an alga-bacterial co-culture. The algicidal activities of L23 against Microcystis aeruginosa UTEX LB 2385, Microcystis aeruginosa NHSB, Anabaena variabilis AG10064, Scenedesmus quadricauda AG10003, and Chlorella vulgaris AG10034 were 88 ± 1.2%, 94 ± 2.6%, 93 ± 0.5%, 82 ± 1.1%, and 47 ± 0.9%, respectively. The L23 cells had low algicidal activity in cell pellet (3%-9%) compared with the cell-free supernatant (78%-93%), indicating that the activity is induced by extracellular substances. Adding glucose, NaNO3, NH4Cl, and KH2PO4 to the co-culture raised the algicidal activity of the L23 against green algae by 5%-50%. Conversely, a 10%-20% decrease in activity occurred against the target cyanobacteria except M. aeruginosa UTEX LB 2385. These results indicated that the interspecific algicidal activity changes according to the nutritional status, which means that the alga-bacterium interaction will be more complex in the field where the nutritional status changes from time to time.


Assuntos
Aeromonas/fisiologia , Antibiose/fisiologia , Proliferação Nociva de Algas/fisiologia , Aeromonas/classificação , Aeromonas/genética , Anabaena variabilis/fisiologia , Antioxidantes/metabolismo , Chlorella vulgaris/fisiologia , Meios de Cultura , Herbicidas/metabolismo , Lagos/microbiologia , Microcystis/fisiologia , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Scenedesmus/fisiologia
14.
Environ Microbiol ; 21(3): 1140-1150, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30761715

RESUMO

Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.


Assuntos
Aeromonas veronii/fisiologia , Microcystis/fisiologia , Aeromonas/fisiologia , Antibiose/fisiologia , Meios de Cultura , Lagos/microbiologia , Microcystis/metabolismo
15.
Probiotics Antimicrob Proteins ; 11(1): 186-197, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29181803

RESUMO

The bioprospecting proficient of novel pigmented probiotic strains with respect to aquaculture industry was unexplored hitherto. In this study, we investigated the probiotic potential of novel pigmented bacterial strains isolated from the indigenous soil sediments in their vicinal habitats, which were screened for their antimicrobial activity against aquatic pathogens using agar well diffusion assay. The strains namely Exiguobacterium acetylicum (S01), Aeromonas veronii (V03), and Chryseobacterium joostei (V04) were phenotypically identified and confirmed by 16S rRNA gene sequence analysis. Further characterization revealed that strains S01 and V03 survive relatively in lower pH and higher bile salt concentrations and possess good adherence ability and broad-spectrum antibiotic susceptibility. The isolate S01 exhibited the higher adhesion ability to hydrocarbons (82%) and mannose-specific adhesion (msa) gene expression. Additionally, the probiotic effects were evaluated in Artemia nauplii fed with algae supplemented with S01, V03, and V04 strains (2.7 × 107 cfu/mL) for 3 days under axenic environment. We observed a significant increase (p < 0.05) in the survival rate of Artemia nauplii treated with S01 (83 ± 5%) and V03 (55 ± 5%), whereas the survival rate was only 30 ± 0% in the untreated group. Moreover, the individual length (IL) was increased in treated group S01 (156.7 ± 2.2 µm), V03 (146.1 ± 3.4 µm), and V04 (134.4 ± 2.5 µm) compared with untreated group (116.0 ± 4.8 µm). Our results revealed that E. acetylicum S01 exhibits desirable functional probiotic attributes compared to A. veronii and C. joostei and it would be a promising probiotic strain, which can be efficiently used in the aquaculture applications.


Assuntos
Aeromonas/fisiologia , Aquicultura , Bacillaceae/fisiologia , Chryseobacterium/fisiologia , Probióticos/farmacologia , Microbiologia do Solo , Aeromonas/isolamento & purificação , Bacillaceae/isolamento & purificação , Aderência Bacteriana , Chryseobacterium/isolamento & purificação
16.
J Fish Dis ; 41(12): 1843-1857, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30239011

RESUMO

The aims of this study were to determine the prevalence and phylogenetic relationship of motile Aeromonas spp. that might be pathogenic species for rainbow trout in infected/mix infection cases (based upon different outbreaks on fish farms). A total of 99 motile Aeromonas isolates (and three reference strains) were analysed that were isolated from four different fish species in different sizes of fish (0.1-3,000 g), different months and water temperatures (6.1-21.2°C). The biochemical characteristics of the isolates were determined using conventional tests and a rapid test kit. Additionally, molecular identification was performed using the gyrB housekeeping gene region and with glycerophospholipid-cholesterol acyltransferase polymerase chain reaction (GCAT-PCR). The sequencing results obtained from the gyrB gene region were deposited in the GenBank database, and phylogenetic relationships were determined with the BioNumerics 7.6 database. Nearly half of the Aeromonas isolates that were isolated from rainbow trout showing signs of disease were determined to be possible infectious agents. Aeromonas species exhibit biochemical variability for many characters, so some Aeromonas species tested negative for GCAT-PCR despite that this test was created especially for Aeromonas identification. The phylogenetic tree based upon gyrB contained 10 different phylogroups that were based on 96% cut-off value in gyrB gene region.


Assuntos
Aeromonas/fisiologia , Coinfecção/veterinária , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/veterinária , Oncorhynchus mykiss , Infecções Oportunistas/veterinária , Aciltransferases/análise , Aeromonas/classificação , Aeromonas/genética , Animais , Proteínas de Bactérias/análise , Coinfecção/epidemiologia , Coinfecção/microbiologia , DNA Girase/análise , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções Oportunistas/epidemiologia , Infecções Oportunistas/microbiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Turquia/epidemiologia
17.
J Aquat Anim Health ; 30(3): 201-209, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29799641

RESUMO

In response to population declines of North American Burbot Lota lota maculosa (hereafter, Burbot), conservation aquaculture methods have been developed for this species. In general, Burbot are relatively resistant to many salmonid pathogens; however, cultured juvenile Burbot have experienced periodic epizootic disease outbreaks during production. A series of trials was conducted to determine the virulence of select bacteria isolated from juvenile Burbot after outbreaks that occurred in 2012 and 2013 at the University of Idaho's Aquaculture Research Institute. Initial clinical diagnostics and sampling resulted in the isolation of numerous putative bacterial pathogens. To determine which bacteria were the most likely causative agents contributing to these epizootics, juvenile Burbot received intraperitoneal (IP) injections of select bacteria in log-phase growth. Mortality associated with specific isolates was recorded, and more comprehensive challenges followed this initial screening. These challenges used side-by-side IP and immersion methods to expose Burbot to potential pathogens. The challenges resulted in significantly higher mortalities in fish after IP injection with two Aeromonas sp. isolates compared to controls, but no significant difference in mortality for immersion-challenged groups was observed. Results demonstrate that two Aeromonas sp. isolates cultured from the epizootics are virulent to Burbot.


Assuntos
Aeromonas/fisiologia , Aeromonas/patogenicidade , Doenças dos Peixes/microbiologia , Gadiformes , Infecções por Bactérias Gram-Negativas/veterinária , Aeromonas/isolamento & purificação , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia
18.
Fish Shellfish Immunol ; 77: 445-456, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626668

RESUMO

Little is known regarding the impact of penoxsulam, a fluorinated benzenesulfonamid rice herbicide, on Oreochromis niloticus (O. niloticus). Therefore, the current study was undertaken to highlight the effects of penoxsulam exposure on O. niloticus and to evaluate the advantages of Chlorella vulgaris (CV) dietary supplementation against the induced effects. The 96-h lethal concentration 50 (LC50) penoxsulam value for O. niloticus was estimated at 8.948 mg/L by probit analysis in a static bioassay experiment. Next, 360 healthy fish were randomly allocated into 6 treatment groups. The T1 group served as the negative control and was fed a basal diet. The T2 group served as the positive control and was fed a basal diet supplemented with 10% CV. The fish in the T3 and T4 groups were exposed to 1/10 the 96-h LC50 of penoxsulam (0.8948 mg/L) and were fed the basal diet alone or the basal diet supplemented with 10% CV, respectively. The fish in the T5 and T6 groups were exposed to 1/5 the 96-h LC50 of penoxsulam (1.7896 mg/L) and fed the basal diet alone or the basal diet supplemented with 10% CV, respectively. Sub-acute penoxsulam exposure significantly altered hematological indices, as well as compromised the fish's immune defense mechanisms, including the phagocytic percentage, phagocytic index, nitric oxide production, immunoglobulin M levels and lysozyme, anti-trypsin and bactericidal activities subsequently decreasing O. niloticus's resistance to the Aeromonus sobria challenge and increasing disease symptoms and the mortality rate. Furthermore, sub-chronic penoxsulam exposure markedly altered growth performance, oxidant/antioxidant status and liver status and down-regulated the expression of interleukin-1ß (IL-1ß) and tumor necrosis-α (TNF-α). Interestingly, incorporating 10% CV into the diet protects fish against sub-acute penoxsulam-induced immunotoxicity via improvement of immune responses that increases the resistance against bacterial infection. Further, it improved the growth performance, oxidant/antioxidant status, liver status and markedly up-regulated immune-related gene expression, IL-1ß and TNF-α, in the spleens of fish sub-chronically exposed to penoxsulam. These outcomes showed that dietary CV supplementation can protect the commercially valuable freshwater fish O. niloticus against penoxsulam toxicity and may be a potential feed supplement for Nile tilapia in aquaculture.


Assuntos
Chlorella vulgaris/química , Ciclídeos/imunologia , Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Sulfonamidas/toxicidade , Uridina/análogos & derivados , Aeromonas/fisiologia , Ração Animal/análise , Animais , Ciclídeos/sangue , Ciclídeos/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Bactérias Gram-Negativas/imunologia , Herbicidas/efeitos adversos , Distribuição Aleatória , Uridina/toxicidade , Poluentes Químicos da Água/toxicidade
19.
Curr Microbiol ; 75(7): 934-941, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29541800

RESUMO

Lamprey was considered to be one of the most basal jawless vertebrate representatives for studying vertebrate evolution, embryo development, and the origin of adaptive immunity. Here we investigated the effect of the gut-derived Aeromonas on the lamprey leukocytes proteome using the label-free liquid chromatography-tandem mass spectrometry for quantitative proteomics analysis. Significant difference was observed in the regulation of 34 out of 755 proteins in Aeromonas-immunized lamprey. 31 proteins were only identified in saline solution-immunized lamprey and 47 proteins were only identified in Aeromonas-immunized lamprey. Quantitative real-time polymerase chain reaction was used to validate the results of the proteomic analysis. The differentially expressed proteins were found to be associated with several different biological processes. The identification of leukocytes proteins essential for lamprey adaptive immune response induced by gut-derived Aeromonas strain could supply important information on lamprey-Aeromonas interactions and VLR-based adaptive immune signal pathways.


Assuntos
Aeromonas/fisiologia , Proteínas de Peixes/química , Lampreias/genética , Lampreias/microbiologia , Leucócitos/química , Proteoma/química , Aeromonas/genética , Aeromonas/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lampreias/imunologia , Leucócitos/imunologia , Leucócitos/microbiologia , Espectrometria de Massas , Proteoma/genética , Proteoma/imunologia , Proteômica
20.
Microb Pathog ; 116: 109-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29355700

RESUMO

Aeromonas are ubiquitous in aquatic habitats. However some species can cause infections in humans, but rarely meningitis. Here we describe the isolation and characterization of an Aeromonas strain from cerebrospinal fluid of a meningitis patient. The isolate, identified as A. trota by biochemical and molecular methods, was susceptible to ampicillin but resistant to cephalothin and cefazolin. Genome sequencing revealed virulence factor genes such as type VI secretion system, aerolysin and lateral flagella. The isolate exhibited swarming motility, hemolytic activity and adhesion and cytotoxicity on HeLa cells. This is the first report of A. trota associated with meningitis and its virulence characteristics.


Assuntos
Aeromonas/classificação , Aeromonas/isolamento & purificação , Líquido Cefalorraquidiano/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Meningites Bacterianas/microbiologia , Aeromonas/genética , Aeromonas/fisiologia , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...